Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502163

RESUMO

Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.


Assuntos
Actinas , Proteínas rho de Ligação ao GTP , Animais , Camundongos , Transdução de Sinais , Transmissão Sináptica , Endocitose
2.
STAR Protoc ; 4(3): 102499, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573502

RESUMO

Microtubule dynamics and orientation have crucial roles in many vital cellular processes. However, functional live imaging of microtubules and/or microtubule ends in primary microglia can be challenging. Here, we present a protocol for observing microtubules and microtubule ends in both fixed and live primary microglia cells. We describe steps for microglia culture and in vitro stimulation, SiR-tubulin labeling, lentivirus preparation, live imaging, immunostaining, and image acquisition. We also provide procedures for SiR-tubulin, EB3-EGFP, and EB1 analyses. For complete details on the use and execution of this protocol, please refer to Rosito et al. (2023).1.

3.
Vet Rec ; 192(9): e2733, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912161

RESUMO

BACKGROUND: Automated fluorescence-based haematology analysers are now available for reticulocyte enumeration in veterinary medicine, but manual counting is still largely used. This study aimed to evaluate potential sources of analytical and pre-analytical errors when performing automated and manual counts. METHODS: Automated and two-operator double-blind manual reticulocyte counts were performed on 15 blood samples. The intra-assay variation of the automated and manual counts and the interoperator variation in the manual counts were then calculated. In addition, the effects of storage were evaluated using samples refrigerated at 4°C or stored at room temperature for 2, 4, 12, 24, 48 or 72 hours after sampling. RESULTS: Intra-assay coefficients of variation were lower for automated counts than for manual counts. Comparison between automated and mean total manual reticulocyte count showed no significant differences. In both refrigerated samples and those stored at room temperature, an increase in reticulocyte count was recorded only after 72 hours. Staining artefacts occurred only in one stored sample counted manually. LIMITATIONS: The presence of cytoplasmic particles other than RNA can cause misinterpretation of cells, leading to an erroneous reticulocyte count. CONCLUSION: The use of an automated analyser is preferable for reticulocyte enumeration in dogs. Common storage conditions seem to minimally affect reticulocyte evaluation; however, it is recommended to perform the analysis as soon as possible after sampling.


Assuntos
Reticulócitos , Animais , Cães , Reprodutibilidade dos Testes , Contagem de Reticulócitos/veterinária , Método Duplo-Cego
4.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993604

RESUMO

Acetylated microtubules play key roles in the regulation of mitochondria dynamics. It has however remained unknown if the machinery controlling mitochondria dynamics functionally interacts with the alpha-tubulin acetylation cycle. Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion, transport and tethering with the endoplasmic reticulum. The role of MFN2 in regulating mitochondrial transport has however remained elusive. Here we show that mitochondrial contacts with microtubules are sites of alpha-tubulin acetylation, which occurs through the MFN2-mediated recruitment of alpha-tubulin acetyltransferase 1 (ATAT1). We discover that this activity is critical for MFN2-dependent regulation of mitochondria transport, and that axonal degeneration caused by CMT2A MFN2 associated mutations, R94W and T105M, may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in regulating acetylated alpha-tubulin and suggest that disruption of the tubulin acetylation cycle play a pathogenic role in the onset of MFN2-dependent CMT2A.

5.
Cell Rep ; 42(2): 112104, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787220

RESUMO

Microglia reactivity entails a large-scale remodeling of cellular geometry, but the behavior of the microtubule cytoskeleton during these changes remains unexplored. Here we show that activated microglia provide an example of microtubule reorganization from a non-centrosomal array of parallel and stable microtubules to a radial array of more dynamic microtubules. While in the homeostatic state, microglia nucleate microtubules at Golgi outposts, and activating signaling induces recruitment of nucleating material nearby the centrosome, a process inhibited by microtubule stabilization. Our results demonstrate that a hallmark of microglia reactivity is a striking remodeling of the microtubule cytoskeleton and suggest that while pericentrosomal microtubule nucleation may serve as a distinct marker of microglia activation, inhibition of microtubule dynamics may provide a different strategy to reduce microglia reactivity in inflammatory disease.


Assuntos
Microglia , Microtúbulos , Centrossomo , Citoesqueleto , Complexo de Golgi , Tubulina (Proteína)
7.
Exp Neurol ; 360: 114274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379274

RESUMO

Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.


Assuntos
Doenças do Sistema Nervoso Periférico , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Axônios/patologia , Transporte Axonal , Processamento de Proteína Pós-Traducional
8.
Acta Neuropathol ; 145(1): 29-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357715

RESUMO

Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AßO). Notably, AßO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Camundongos , Animais , Humanos , Adulto , Metiltransferases/genética , Fosforilação/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , MicroRNAs/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
9.
Front Cell Dev Biol ; 10: 926914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092705

RESUMO

Microtubules (MTs) support a variety of neuronal functions, such as maintenance of cell structure, transport, and synaptic plasticity. Neuronal MTs are highly heterogeneous due to several tubulin isotypes and the presence of multiple post-translational modifications, such as detyrosination and acetylation. The tubulin tyrosination/detyrosination cycle is a key player in the maintenance of MT dynamics, as tyrosinated tubulin is associated with more dynamic MTs, while detyrosinated tubulin is linked to longer lived, more stable MTs. Dysfunction of tubulin re-tyrosination was recently correlated to Alzheimer's disease progression. The implication of tubulin acetylation in Alzheimer's disease has, however, remained controversial. Here, we demonstrate that tubulin acetylation accumulates in post-mortem brain tissues from Alzheimer's disease patients and human neurons harboring the Alzheimer's familial APP-V717I mutation. We further show that tubulin re-tyrosination, which is defective in Alzheimer's disease, can control acetylated tubulin in primary neurons irrespective of the levels of the enzymes regulating tubulin acetylation, suggesting that reduced MT dynamics associated with impaired tubulin re-tyrosination might contribute to the accumulation of tubulin acetylation that we detected in Alzheimer's disease.

10.
Sci Rep ; 12(1): 13520, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941181

RESUMO

SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.


Assuntos
Actinas , Proteínas de Transporte , Tionas/farmacologia , Uracila/análogos & derivados , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Forminas , Humanos , Mamíferos/metabolismo , Camundongos , Estrutura Terciária de Proteína , Uracila/farmacologia
11.
Brain ; 145(7): 2486-2506, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35148384

RESUMO

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Tubulina (Proteína) , Doença de Alzheimer/metabolismo , Animais , Humanos , Camundongos , Microtúbulos , Peptídeos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
12.
Front Cell Dev Biol ; 9: 747699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820375

RESUMO

Transthyretin (TTR), a plasma and cerebrospinal fluid protein, increases axon growth and organelle transport in sensory neurons. While neurons extend their axons, the microtubule (MT) cytoskeleton is crucial for the segregation of functional compartments and axonal outgrowth. Herein, we investigated whether TTR promotes axon elongation by modulating MT dynamics. We found that TTR KO mice have an intrinsic increase in dynamic MTs and reduced levels of acetylated α-tubulin in peripheral axons. In addition, they failed to modulate MT dynamics in response to sciatic nerve injury, leading to decreased regenerative capacity. Importantly, restoring acetylated α-tubulin levels of TTR KO dorsal root ganglia (DRG) neurons using an HDAC6 inhibitor is sufficient to completely revert defective MT dynamics and neurite outgrowth. In summary, our results reveal a new role for TTR in the modulation of MT dynamics by regulating α-tubulin acetylation via modulation of the acetylase ATAT1, and suggest that this activity underlies TTR neuritogenic function.

13.
Curr Opin Neurobiol ; 69: 113-123, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33873059

RESUMO

In neurons, control of microtubule dynamics is required for multiple homeostatic and regulated activities. Over the past few decades, a great deal has been learned about the role of the microtubule cytoskeleton in axonal and dendritic transport, with a broad impact on neuronal health and disease. However, significantly less attention has been paid to the importance of microtubule dynamics in directly regulating synaptic function. Here, we review emerging literature demonstrating that microtubules enter synapses and control central aspects of synaptic activity, including neurotransmitter release and synaptic plasticity. The pleiotropic effects caused by a dysfunctional synaptic microtubule cytoskeleton may thus represent a key point of vulnerability for neurons and a primary driver of neurological disease.


Assuntos
Microtúbulos , Sinapses , Citoesqueleto , Neurônios , Transmissão Sináptica
14.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876743

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Assuntos
Integrinas/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Drosophila melanogaster , Endossomos/metabolismo , Feminino , Gânglios Espinais/citologia , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/etiologia
15.
Neurosci Lett ; 753: 135850, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33775740

RESUMO

In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.


Assuntos
Espinhas Dendríticas/metabolismo , Microtúbulos/metabolismo , Doenças do Sistema Nervoso/patologia , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Humanos , Microtúbulos/patologia , Sinapses/patologia
16.
STAR Protoc ; 2(1): 100342, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665622

RESUMO

Analyses of microtubule (MT) plus end dynamics at glutamatergic en passant boutons can be carried out in cultured primary neurons isolated from mouse or rat embryos or ex vivo in acute slices isolated from mice that had been electroporated in utero. Here, we describe a protocol for setting up and analyzing live image recordings of primary neurons and acute hippocampal slices expressing tagged versions of the MT plus end binding protein EB3 and the presynaptic vesicle markers vGlut1 or VAMP2. For complete information on the use and execution of this protocol, please refer to Qu et al. (2019).


Assuntos
Hipocampo/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Transportador de Glucose Tipo 1/metabolismo , Hipocampo/citologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Proteína 2 Associada à Membrana da Vesícula/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468672

RESUMO

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Assuntos
Bortezomib/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Animais , Antineoplásicos/efeitos adversos , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Larva/efeitos dos fármacos , Larva/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Peixe-Zebra/genética
18.
Aging (Albany NY) ; 12(19): 18793-18794, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052882
19.
Nat Commun ; 11(1): 4640, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934232

RESUMO

Small molecule inhibitors are prime reagents for studies in microtubule cytoskeleton research, being applicable across a range of biological models and not requiring genetic engineering. However, traditional chemical inhibitors cannot be experimentally applied with spatiotemporal precision suiting the length and time scales inherent to microtubule-dependent cellular processes. We have synthesised photoswitchable paclitaxel-based microtubule stabilisers, whose binding is induced by photoisomerisation to their metastable state. Photoisomerising these reagents in living cells allows optical control over microtubule network integrity and dynamics, cell division and survival, with biological response on the timescale of seconds and spatial precision to the level of individual cells within a population. In primary neurons, they enable regulation of microtubule dynamics resolved to subcellular regions within individual neurites. These azobenzene-based microtubule stabilisers thus enable non-invasive, spatiotemporally precise modulation of the microtubule cytoskeleton in living cells, and promise new possibilities for studying intracellular transport, cell motility, and neuronal physiology.


Assuntos
Microtúbulos/química , Paclitaxel/química , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Isomerismo , Microtúbulos/metabolismo , Neurônios/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paclitaxel/farmacologia
20.
Front Neurosci ; 14: 874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982670

RESUMO

Alzheimer's disease (AD), a chronic multifactorial and complex neurodegenerative disorder is a leading cause of dementia. Recently, neuroinflammation has been hypothesized as a contributing factor to AD pathogenesis. The role of adaptive immune responses against neuronal antigens, which can either confer protection or induce damage in AD, has not been fully characterized. Here, we measured T cell responses to several potential antigens of neural origin including amyloid precursor protein (APP), amyloid beta (Aß), tau, α-synuclein, and transactive response DNA binding protein (TDP-43) in patients with AD and age-matched healthy controls (HC). Antigen-specific T cell reactivity was detected for all tested antigens, and response to tau-derived epitopes was particularly strong, but no significant differences between individuals with AD and age-matched HC were identified. We also did not observe any correlation between the antigen-specific T cell responses and clinical variables including age, gender, years since diagnosis and cognitive score. Additionally, further characterization did not reveal any differences in the relative frequency of major Peripheral Blood Mononuclear Cells (PBMC) subsets, or in the expression of genes between AD patients and HC. These observations have not identified a key role of neuronal antigen-specific T cell responses in AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...